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The stability problem of circular cylindrical shells of variable thickness under
axial compression is examined, taking account of the bending stress of the initial
pre-critical state,

The initial bending equilibrium states of shells of variable thickness are described
by nonlinear differential equations,and then a linearized system of stability differ-
ential equations with variable coefficients is obtained on the basis of [1, 2]. The
variable coefficients reflect the influence of the initial bending state and the
variability of the shell thickness. The nonlinear equations of the pre-critical
state are solved by the small parameter method for an initial axisymmetric equi-
librium mode, An iteration process to determine the critical forces is constructed
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by using the small parameter method on a linearized system of stability equa-
tions, The problem is solved in three approximations in the small parameters,

1., The nonlinear equations of the pre-critical state of cylindrical shells of variable
thickness are [3] 1 30 (L1
M- (D, w, ®)=A (DAw) —(1 — V) L(D.w)— 7 B — '

02w

L(®, w)+ Ne—7g =0

4 2w 1
M+ (H, w. ®)= 5 (HA®) — (1 +v) L (H, ®) + 5 53+ 5 L (0, w) =0

Eh3(z, v) i
D=12(1__v2)' H= Eh(x, y)
T u I 2u %

L(wv) =5 5 + 32 a7~ 3woy 9wy
We represent the stress and normal displacement functions as
Q)=q)o+q)($1y)1w=wo+w($ay) (1~2)
Here g, and y, are the stress and deflection functions corresponding to the pre-critical
state of the shell, and @ (z, ¥) and w (z, y) are the increments to these quantities which
originate during buckling.
Substituting (1. 2) into (1, 1) and neglecting second order quantities, we obtain the
linearized system of equations P

1
A(DAw)~(1—v)L(D, "’)—TW—L((P’WO)_ (1.3)

0w
L (@ow) + Ny 55 = — M~ (D, wo, Qo)

A(HAQ) — (1 —) L (. @)+ 325 + L (0, w) = — M+ (H. wn, 9o

The system (1.3) affords the possibility of finding the solution of the nonlinear system
as well as of solving the problem of the stability of the initial bending state. The right-
hand sides of (1.3) agree in form with the left-hand sides of (1. 1). Hence, when the so-
lution of (1. 1) will have been found, the system (1. 3) will become homogeneous and
will have a nontrivial solution for a fixed value of the load parameter.

Let us assume that the solution of the system (1. 1) has been found, then we obtain the
stability equations of variable-thickness cylindrical shells in the bending state

1 o
A(DAw)—(i—v)L(D,w)—-ﬁa—i-—L(cpo,w)—L(cp.wo)—i—Nxaai;zz- (1.4
1 o
ACHA®)— (A — V) L(H, ) + 5 5o+ L (w0, ) =0

The equations (1.4) have variable coefficients reflecting the influence of the initial ben-
ding state and the variability of the shell thickness. Therefore, the solution of the stabi-
lity problem of the bending state of variable-thickness cylindrical shells reduces to inte-
grating the system (1. 1) and the stability equations (1.4).

Let us assume that the shell thickness can be represented as

hmax _ hmin

=h(ltef(z.y)]. &= She (1.5)

where bk, is the mean value of the thickness and & is a small parameter. Then the vari-
able stiffnesses D and H can be written as follows
D = Do [1 + Ef (.’E, y)]”, H = Holi e 8’ (xi .1/) + e2fl (3, y) - "-]
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Substituting these variable quantities into (1. 1) and then taking the solution as series
expansions in the small parameter ¢, we obtain the following solution of the axisymmet-
ric initial equilibrium mode if the shell is hinge-supported at the endfaces £ = 0 and

z=1 wo = f_. (sin Mr+e 2 0313, 8in kpx) (1.6)
]

1 . .
Po= f,, (Wsm Az 4+ EZBIHP sin A’p“") (1.7)
e

1

1
[ (1) _ = (2
Uape = 1T (N, — NW) <pr RH:Doh 8 pr>

ll-lP
Bipe= RHoh 2 +7a A 1Cle  Nop = Doly? + REH M2

Here f,, is the initial pre-critical deflection, X, 0p 188 quantity obtained from NmJL if
w is replaced by p,and C{}) and C{) are the right-hand sides of the first approxima-
tion equations with the form ment1oned in [3]. Depending on the law of thickness vari-
ation, we can find C{, and C{).

Taking account of (1, 5) and (1, 6), the system (1. 4) becomes the following:

AAw + 3eL~ (f, w) + 362L,~ (f2, w) + L.~ (f3, w) + (1.8)
02
fob 00 (KPZ sin A, x—l—azo‘ V;A‘p sin A, x) E +
foho 92w

1
"Dy (RH sin Ay -+ BZBIM sin A oc) T

1 62@ [vx 2w

7Dy 322 T Dy 022 — 0

. e 1 0w
AAQ — gLt (f, @) 2L ¥ (1, @) — €517 (%, @) + R, 3af —

02w
fo (}‘H smlpx—}—eZdwchr sin A, x) 5=

LE@r ) = Awao)— (1 v L (¥ 2, k=123

The system (1.8) contains two small parameters, € and j, = fm/h,. We seek the solu-
tion of (1.8) as power series in the small parameters [4]

(=] oo oo o0

= Z 2 skfosq)ks (=, ¥), w o= Z Z ekfos W, (. y) (1.9
k=0 s==0 k=0 s=0

= 2 2 8kfo"’vks
k=0 s=0

Substituting (1. 9) into (1.8) and equating coefficients of identical powers of the small
parameters, we obtain a system of successive differential equations with constant coef-

ficients
My (woor @oo) = 0, M2 (wgor Poo) =0 (1.10)

Nuw 8w
M; (w10, @10) = — 3L, (f, weo) — "‘]jl:‘ axfo . Ma(wi, Gu) = L,* {f, Qo)
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N1 w0 Ny 0*weo
Dy 822 = Do 0822

M) (w20, P20) = — 3L, (f, wro) — 3L, (f* woo) —
Mz (wzo, quo) = L\,+ (f, (Pxo) - Lv“ (fz: cPOO)

o R .ho 32(?00 1 c'ﬂwm No1 ?woo
My (wo, Qu) = 5, sin "px (M» v T RHo op% ) — Do 02 (1.11)
Pho Fwo
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ho 32(1)01 1 Fwn
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2ho 92wor
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32(]710 1 wiw

' ,‘m : (1.12)
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3P0 woo - Ny %o
Z }v sin A. X ( IPP ay2 -+ t?’lp.p "@T) . 3Lv (f’ wo1) — Dy 922
}» 2ho 52w 2w,
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RHo 8yt ] 7 Dy 0922 — Do 022 — Do 022 Do 02%
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My *ha 3“w2o 0%wno
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1 % | Nodu
~TRDe 322" Dy 32
1 %
Mz (u, v):AAv+—REFx—2

My (u, v) = AAu

The systems (1. 10) — (1. 12) agree completely, in structure, with the equations of the
theory of circular, constant~thickness cylindrical shells with an initial membrane state.
The solution of these equations can be obtained by known methods of cylindrical shell

theory,

Therefore, by using the small parameter method to determine the compressive force,
an iteration process can be constructed. The solution of the first two equations of the
system (1, 10) is known in a zero approximation {1].

The corrections to the zero-approximation solution which take account of the varia-
bility in the thickness and of the initial bending state will be obtained by solving the
system of equations (1. 10) — (1. 12) successively. The first group of equations (1. 10)
takes account of the influence of just the variability in thickness, the second group of
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Egs, (1. 11) takes account of the initial bending state, and the third group takes account
of the mutual influence of the variability in thickness and the bending state.

2. We examine a scheme to determine the critical forces for variable~thickness cy-
lindrical shells when the shell edges are hinge-supported at # = 0 and = = L.
We take the stress and deflection functions satisfying the boundary condition in the

zero approximation as A, 2f
m
woo = forn¥omn, P00 = M_WRHOAEM Womn (2.3
. . ny mi
Womn = iR ApZ sin 7, A, =7~

Substituting (2, 1) into the first pairs of equations of the system (1, 10), we obtain the
known value of the compressive force for the initial membrane state 1}
A2 A2, mm\? ( n )312
2 e —_— —

Noo = Do —5— }" + RHOA%M’ Amn“[( L) + R (2.2)
This zero-approximation value does not differ at all from the "upper” value of the cri-
tical force for circular cylindrical shells of constant thickness 4.

Solving the remaining pairs of differential equations of the system (1. 10) successively,

we find the correction terms to the values in (2. 2), We find these correction terms as

follows.
The solution of the ks-th approximation satisfying the boundary conditions is taken as

Wy, (7, ¥) = EZB“‘* Vopgs  Pgs (B 1) = 2} D) AG wopg (2.3
P q

Substituting (2. 3) into (1. 10) — (1. 12) of the ks-th approximation, and then multiplying
both sides of the equation by wgpg and integrating over the shell domain, we obtain a
system in BUY), 44, Solving this system, we find

1 A2
B( s) W P @ 2.4
A2 WV opg — Nomn) (kas RHoDoA2 kas) (2.4)
A
the) _ P pk —
Ao’ = i, A2, B s)'*“ C( paks

Setting m = p and = = ¢ in (2.4),we obtain the following conditions to determine the

corrections to the values (2. 2):

A2

0 (2.5)

R L ——l ¢
Cmnks RDq A2 C‘s'n?nks
mn
N 4 , .
( C&ks =TT SS F) (2, y) wopp 424, i=1, 2)
G

Here (l) {z, y) and Fm (z, y) are the right-hand sides of the ks-th approximation of
the systems (1.10) —(1.12). We find the values of Ny, from the condition (2.5) in each
approximation.

Therefore, by giving the law of thickness variation, we determine the corrections to
the values (2. 2) which take account of the bending state and the variability of the shell
thickness.
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8. As an illustration, let us consider a closed circular cylindrical shell with linearly-
varying thickness in the z- axis direction: h (z) = hpy;, (1 + Az/L). Transforming h (z)
in terms of the mean value of the thickness in the form (1. 5), we have

f@ =2z/L1,8=AQ2-+ ]

o . 48}191)0 PR !}.2
e n‘zkpz (B2 — p2)2 (Nop - N()H) W SREH 0 Dop?

_ %yup 16pp _pf‘(i p2 — 2 1
e = A3~ Ty o 1T )

In these expressions p == p and u as well as p -+ p are odd numbers,
Solving the system of equations (1. 10}, we find N;; = 0 in a first approximation from
condition (2. 5), and the coefficients of the series (2. 3) are the following:

BUD — a0 . (m+ p— odd)

48mpA2 D 2 (p2 -
oA =mrm 22;&2 Zr\,;n - !’1"5‘“0): m‘Z)J
72 (mP— pEPE A ( opn_‘Nomn) ) LAy

A, 20 2
14—t
3R2H DeAZ A

pSmn

In the second approximation we have
DoAY, 6 Ant
Nﬁﬂx—w(i—m) (1—m3‘a,;;)+ (.2
2%(1 —v)Dof n \2 14w A
L2, 2 ( R ) [1 T 31—v) ReHoDoAL + Mimgn
256 mAp? n2 (p2 — m2) a2 (p? — m2)
Thmpn = nzﬁzlioAmeﬁ%‘l TP [‘ LI 77 ][‘ i ] -

48DpL2 PAL, 2 (m? — p?)
ns 2 m (m2— p2) IﬁAzm X
P

2% 2 -
14 Km kp a(lg)
3R2H0D.,A§mAfm mnp

Let us examine the solution of the second group of equations (1. 11). In the first approxi-
mation

A Ry
= ~————— B{® sin A2 sin 5 — 3.2)
Po1 2‘ ; RH, A?n in 3 R
_1_(}_)2 Ay2ho / sinﬂ{cos(ku—hm)x-— oos(kp+hm)x}
2\’ Ho ‘mn”" R Appn Amsp, n

8hom? n\2 [ Ml 1
Nop = — ﬂ—_—RHo}I- GmZ —pf) ('j{"”) (K?fn‘: +?;’;—é) —
Zhomh,? ( n )z [(;”P' — by *(2m + ) + (M + A'70!)2(2""_’|")}

RRHophA, 2 (At — pi) \'R A3 Al

m-i, 5 mith, n
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B0 = — ot

mni fnm

o0 _ ok (1)2 G + J? _
mni RRHoAE (Ny, — Ny ) R A?nﬂl-, [ — (m 4 p)2]
O = Bmphy?
A aB—(m—p] T AL (g (m— ol — et ]
8mp
M? (W2 — (m — 0] [0 — (m + i)?] ]
In the second approximation we have
Goz = ZZ RH, Az ngf)tsm Az sin —,;Ty — (3.3)

):;};Jho( n ) ZB‘Ol)sm ny [ 08 (hy, — Ap,) _ cos(kp+hm)x}
o

Ag’—l n A}21~+1 n
Neg < 2m‘h02}\p’4‘ (1)4 < 2m+p Zm —p _
RRH oM, 20 (4m% — p2) \"R A A2 ) Namniw
et = () 3| S e +
3 in (03— (m— O] [P — (m + 0¥
8ui (hpy + Ap)?

M= =T — 07 AL e et
(Ap — 7‘!’-)2 ] 501

By Im2— (i [ i

Here m + i are even numbers,
Solving the third group of equations (1. 12), we find the mutual effect of variability
of the thickness and the initial bending state on the magnitude of the critical force.
In the first approximation we find Ny, = 0, BJIY — ol fmn.

mm
The values of N, and N, are not presented because of the awkwardness of the ex-

pressions, Therefore, the series (1, 9) becomes in three approximations

Nx = Ngo + €Ny + 2Ny -+ foNgy + f2oNog + efeN1y + €Ny +efo?Nis (3.4)

Varying m and » we find the last value of Nx. The remaining parameters are deter-
mined so that m + p would be odd numbers and m + i even numbers. The greatest in-
fluence of the pre-critical bending state occurs for a value of p close to the correspon-
ding axisymmetrical buckling mode, i.e.

L R4,
p=nlV V20—
Moreover, the influence of the bending state increases as m approaches p/2. Since p is
odd, then p == 2m — 1. Therefore, in seeking the least value of N, itis suffl.glent to

As an illustration, let us consider a shell with the following geometric and phys1ca1

parameters
L/R = 2, R/ho = 180, Vo= 0.3, hmax = thm, = 1/5, h() = 1,5 hmin
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Presented in Table 1 are the dimensionless values of the critical forces of variable-
thickness cylindrical shells (hpay = 2hy,,) as a function of the initial bending state

(p = 23, m = 12, n = 14) for the zero, first and second approximations N, = Ny* -
eNy,* + e2Ny,", N = N9 4 foNy, N® = N&” T+ folNay (Ny = Ny * + 2N, *,
Ny = Ngg* = eNp*); No* = NiRIEh 2

Table 1
Zero 1N 2N, First Second
fo approximation o 0 approximation | approximation
0.2 1.552 —0.389 0.029 1.163 1.192
0.3 1.552 —0.587 0.072 0.965 1.037
0.4 1.552 —0.776 0.119 0.766 0.885
0.5 1.552 —0.972 0.182 0.580 0.762
0.6 1.552 —1.172 0.265 0.380 0.645
Table 2
h Zero * " Second
%{ approximation Nyo ©*Nao approximation
1.22 0.738 — 0.006 0.744
1.50 0.944 — 0.028 0.975
1.86 1.234 — 0.084 1.318
2.33 1.733 — 0.198 1.931
3.0 2.420 — 0.448 2.868
Tablie 3
; Zero N 2N First Second
¢ approximation *Yo1 002 approximation | approximation
0.2 0.640 —0.171 0.012 0.469 0.481
0.3 0.640 —0.257 0.027 0.383 0.410
0.4 0.640 —0.342 0.047 0.298 0.345
0.5 0.640 —0.427 0.075 0.213 0.288
0.6 0.640 —0:513 0.110 0.127 0.237

Let us examine some particular cases of the problem,

Cylindrical shell of variable thickness for an initial membrane
state, In this case,setting 7, =0 into (3. 4), we obtain the values of the upper critical
forces which are presented in Table 2 as a function of the thickness ratio &
(m = 12, n = 10).

Constant thickness cylindrical shell for an initial bending state,
In this case, setting & = 0 into (3. 4), we obtain the values of the critical forces as a func-
tion of the initial bending state, presented in Table 3 (4 = 23, m = 12, n = 14). The
shell thickness is taken equal to the minimum value k., of a variable thickness shell

max/hmm
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(h = hpyin)-
As the numerical examples show, the difference between the first and second approxi-

mations is negligible if f, and e < 0.6. Hence, the three approximations in the form of
(3.4) in the small parameter reach a satisfactory approximation in the solution of stabi-

lity problems of the initial bending state.
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