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The stability problem of circular cylindrical shells of variable thickness under 
axial compression is examined, taking account of the bending stress of the initial 
pre-critical state, 

The initial bending equilibrium states of shells of variable thickness are described 
by nonlinear differential equations,and then a linearized system of stability differ- 
ential equations with variable coefficients is obtained on the basis of [I, 23,The 
variable coefficients reflect the influence of the initial bending state and the 
variability of the shell thickness. The nonlinear equations of the pre-critical 
state are solved by the small parameter method for an initial axisymmetricequi- 
librium mode. An iteration process to determine the critical forces is constructed 



Stability of circular cylindrical shells 353 

by using the small parameter method on a linearized system of stability equa- 

tions. The problem is solved in three approximations in the small parameters. 

1. The nonlinear equations of the pre-critical state of cylindrical shells of variable 
thickness are [3] 1 as@ 

of-(o,w,~)~A((DAto)-(l--v)L(D.w)--~- (1.1) 

Ehs (x, ?I) I 

D = 12(1 - v2) ’ * = Eh (z, y) 

6% a2v a%_4 a% a2u a% -- L (u$ VI = a,Z &T + ay2 ax2 - 2 JZFj azay 

We represent the stress and normal displacement functions as 

@ = cpo + cp (5, Y), VJ = wo + w (6 V) (1.2) 
Here ‘p. and w,, are the stress and deflection functions corresponding to the pre-critical 
state of the shell, and v (z, Y) and w (I, y) are the increments to these quantities which 
originate during buckling. 

Substituting (1.2) into (1.1) and neglecting second order quantities, we obtain the 
linearized system of equations 

1 &p 
A(DAur)-(1 -v) L(D, w)- R a,z -L(q~,wo)- 

L (cpow) + N, $ = - M- (D. wo. cpo) 

(1.3) 

A(HAcp)-((1 -v)L(H, cp)+ +$ + L(wo, w)=-M+(H, wet cpo) 

The system (1.3) affords the possibility of finding the solution of the nonlinear system 
as well as of solving the problem of the stability of the initial bending state. The right- 
hand sides of (1.3) agree in form with the left-hand sides of (1.1). Hence, when the so- 
lution of (1.1) will have been found, the system (1.3) will become homogeneous and 
will have a nontrivial solution for a fixed value of the load parameter. 

Let us assume that the solution of the system (1.1) has been found, then we obtain the 
stability equations of variable-thickness cylindrical shells in the bending state 

APAw)-(I--)L(D, w)-f$-~(p~, w)-L((P, w~)+N~~~_- (1.4) 

1 azw 

The equations (1.4) have variable coefficients reflecting the influence of the initial ben- 
ding state and the variability of the shell thickness. Therefore, the solution of the stabi- 
lity problem of the bending state of variable-thickness cylindrical shells reduces to inte- 
grating the system (1.1) and the stability equations (1.4). 

Let us assume that the shell thickness can be represented as 
h max - hrnixl 

h = ho 11 + d (2s Y)]. ’ =yho (1.5) 

What ho is the mean value of the thickness and 6 is a small parameter. Then the vari- 
able stiffnesses D and H can be written as follows 

D = Do [i + ej (5, y)ly, H = HoI1 - ~j (2, Y) + e*fa (2, y) - . ..I 
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Substituting these variable quantities into (1.1) and then taking the solution as series 
expansions in the small parameter a, we obtain the following solution of the axisymmet- 
ric initial equilibrium mode if the shell is hinge-supported at the endfaces t = 0 and 
z=L 

wo = f, ( sin hp + E 2 ulpp sin h,s 1 (1.6) 
P 

‘PO= f, sin h,x + E 2 Ppp sin h,x 
> 

F 

1 

a1PP = a,2 (Iv,, - N,p,) 
( 

c$- I ($9 
RHoDo?+ II-9 

> 

1 

(1.7) 

Here fm is the initial pre-critical deflection, 
p is replaced by p, and C$+ 

Iv,, is a quantity obtained from N,,, if 
and C$$ are the right-hand sides of the first approxima- 

tion equations with the form mentioned in [3]. Depending on the law of thickness vari- 
ation, we can find C$k and C$$ 

Taking account of (1.5) and (1.6), the system (1.4) becomes the following: 

AAw + 3&L,- (f, w) + 3eU,- (12, w) + &3L,- (f3, w) + 

9 ( hEL2 sin hp,lr: + E 2 ‘*&~pz sin 1,s) 
@‘p 
a?/2+ 

P 

foho 
~0 

( 
ho sin $2 + E 2 /31jlphc* sin h,x) $ - 

P 

(1.8) 

AAcp -EL,+ (j, cp) $- &ZLY+ (f”, ‘1) -- e”f,,’ (I”, ‘1,) _1- AI_~~ m - 

Ls(u”, v) = A (uAv) - (1 t Y) L (uk, v), k=l, 2, 3 

The system (1.8) contains two small parameters, a and lo = fm/h,. We seek the solu- 
tion of (1.8) as power series in the small parameters [4] 

cp 4 i 5 Ekfgscpks (2, y), 1c ~= i i Ekf(+Gkr (x. y) (1. 9) 
k=O ?.=o k=O s=o 

Nr = i r, ekfOaNks 
k=0 s=o 

Substituting (1. 9) into (1.8) and equating coefficients of identical powers of the small 
parameters, we obtain a system of successive differential equations with constant coef- 

ficients 
M, (woo, (pool = 0, Mz (woo, ‘pool = 0 

(1.10) 
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TV10 aawl 
Ml (WJ, q20) = - 3L,- (f, wo) - 3L,- (f”* woo) - x w - 

Iv24 aZluo0 -- 
D,, ~9x2 

MB (wzo, q20) = L,+ (f 1 CPIO) - L,+ (PI cpd 
.......... .......... :.: 
......... 

a&00- . 1 ‘a2woo No1 aauJo0 
+A2 ayz 

-- 

+ RHO ay2 -xas 

?@ho * 

M2 (~01, ~~01) =T sin+x aY2 

ho 
Ml(zuo2, 'pm~=-~ 

-- 
) 

No1 aawol Nm @WIO 
Doa22- 

-- 
Do axa 

k$ho PwOl 
Mz (wm, (p04 = 7 sin hp ad 
. . . . . . . . ..*I. . . . . . . . . . . . . . . . . . . . . . . . - 

ho . 
Ml (2011, 'p11) = - ~0 stn $9 ( 

a2q10 1 aslo 

hP2 ayZ + RHO ay2 > - __ ^^ 
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(1.11) 

(1.12) 

&.b a2wlo 
> 

N21 a”ww Nn a2wlo N20 a2Wol NO1 a2Wm -__ 
fi/Io sty -zaz_a-Uoad-L)oax2-Doa,z 

M2(WSl, 'PZl) = L,+ (!, 'p11)- L,+ (52. 'PO11 + 

hp% 
- sink 
l-l0 

a2wlo 
lppbp2 sin h,x I 

&J'L 

. . . . . . . . . . . . . 

Here * ’ 
. . . . . . . . . . . 

i a% 
Ml(U, v)==bAu---- 

NW azu 
RDo adfDoa22 

M2 (u, u) = AAv + A0 g2 

The systems (1.10) - (1.12) agree completely, in structure, with the equations of the 
theory of circular, constant-thickness cylindrical shells with an initial membrane state. 
The solution of these equations can be obtained by known methods of cylindrical shell 

theory, 
Therefore, by using the small parameter method to determine the compressive force, 

an iteration process can be constructed. The solution of the first two equations of the 
system (1.10) is known in a zero approximation [l]. 

The corrections to the zero-approximation solution which take account of the varia- 
bility in the thickness and of the initial bending state will be obtained by solving the 
system of equations (1.10) - (1.12) successively. The first group of equations (1.10) 
takes account of the influence of just the variability in thickness, the second group of 
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Eqs. (1.11) takes account of the initial bending state, and the third group takes account 
of the mutual influence of the variability in thickness and the bending state. 

2, We examine a scheme to determine .the critical forces for variable-thickness cy- 
lindrical shells when the shell edges are hinge-supported at z = U and 2 = L. 

We take the stress and deflection functions satisfying the boundary condition in the 

zero approximation as 

~~ = fvlnwo?nn, 
%n2Ln 

9” = RHohk, WOmn (2.1) 

WOmn = sin h,x sin $ , ?b, =F 

Substituting (2.1) into the first pairs of equations of the system (1. lo), we obtain the 
known value of the compressive force for the initial membrane state [I] 

This zero--approximation value does not differ at all from the “upper” value of the cri- 
tical force for circular cylindrical shells of constant thickness h. 

Solving the remaining pairs of differential equations of the system (1.10) successively, 
we find the correction terms to the values in (2.2). We find these correction terms as 

follows. 
The solution of the Its-th aaproximation satisfying the boundary conditions is taken as 

P P P 4 

Substituting (2.3) into (1.10) - (1.12) of the ks- th approximation, and then multiplying 
both sides of the equation by woPg and integrating over the shell domain, we obtain a 

system in 3,s , VW A:;‘, Solving this system, we find 

(2.4) 

Setting m = P and n = Q in (2.4), we obtain the following conditions to determine the 
corrections to the values (2.2): 

(2.5) 

Here Fg (z, g) and F($ (z, y) are the right-hand sides of the ks-th approximation of 
the systems (1.10) - (1.12). We find the values of Nk8 from the condition (2.5) in each 
approximation. 

Therefore, by giving the law of thickness variation, we determine the corrections to 
the values (2.2) which take account of the bending state and the variability of the shell 
thickness. 
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3. AS an illustration, let us consider a closed circular cylindrical sheU with linearly- 

varying thickness in the t- axis direction: h (I) = hmin (1 -t- ML). Transforming h (5) 
in terms of the mean value of the thickness in the form (1.5), we have 

f (2) ZS 22 / L -1,E=h/(2+h) 

QIPP’ 
48~pDo 

sc%,2 (~2 - p’)z (N 
OP 

- iVop) 

In these expressions P # p and u as well as p i- p are odd numbers. 
Solving the system of equations (1. lo), we find N,, X 0 in a first approximation from 

condition (2.5), and the coefficients of the series (2.3) are the following: 

&a = 
&mpAk,Do 

VW x2(m~--p~)~~ *(iv P OPfl 
-_N 

I+ 
&&= 

3R2HoDoA;&, > 

In the second approximation we have 

(3.1) 

24(i--y)Do n 2 
G%,a R 

( )[ 

i+v 
i- 3(1 

kna 
- V) ~~~~oA~~ 1 + %m, 

If 
hm%p~ 

3R2HoDoA;,A&, 1 &O) 
mnp 

Let us examine the solution of the second group of equations (1.11). In the first approxi- 
mation 

(3.2) 
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@l) - 
2h0ihp2 n 2 

mni - aRHoAi2 (Noin - Nom,,) 
( )[ 

@m + +A2 
R $,,+p. ,, [ia - (m + VI - 

(A, - ip)Z 8mpli, 2 

AL+, n t i2 - (m - WI ’ Agn [us- (m- i)*][pl- (m + i)2] + 

8mP 
v 1112 - (m - i)2] [ p2 - (m + i)2] 1 

In the second approximation we have 

cos($+h,)z ] 

p+i, n 

z RHoh, ‘+ (km% - ~2) 

Afn ]uz - (m - i)2] 1~2 - (m + i)“] ’ 

8pi 
lp2 lP"- im- iILl W- Cm + q&l + 

tam + h12 
A;+~,+ [,112__ tIL + i)21 - 

(A, --$I2 

Ak_n,i [m2 - (p - r)s] 1 as?i 

Here m + i are even numbers. 
Solving the third group of equations (1.12), we find the mutual effect of variability 

of the thickness and the initial bending state on the magnitude of the critical force. 
In the first approximation we find N,r = 0, Bf’n” = a$$ fmn. 
The values of Nis and N,r are not presented because of the awkwardness of the ex- 

pressions. Therefore, the series (1.9) becomes in three approximations 

Nx = N,, + EN,, + esN,, -I- foN, -I- f20No, -k “joNI, -k EY~NSI -l-&fo2N1s (3.4) 

Varying m and n we find the last value of N X. The remaining parameters are deter- 

mined so that m -I- p would be odd numbers and m $ i even numbers. The greatest in- 
fluence of the pre-critical bending state occurs for a value of u close to the correspon- 
ding axisymmetrical buckling mode, i.e. 

Moreover, the influence of the bending state increases as m approaches ~12. Since 11 is 
odd,then p = 2m - 1. Therefore, in seeking the least value of N, it is sufficient to 
vary n. The number of waves along the arc can be taken in the order of v E&. 

As an illustration. let us consider a shell with the following geometric and physical 
parameters 

L/R = 2, R/h, = 180, v = 0.3, hmax = 2h,,,, = l/s, ho = I,5 hlnin 
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Presented in Table 1 are the dimensionless values of the critical forces of variable- 

thickness cylindrical shells (bax = 2h,,,) as a function of the initial bending state 
(p = 23, m = 12, n = 14) for the zero, first and second approximations N,‘“’ = No,,* -j- 

eNI,* + eaNlO*, Nz’ = N,(” -I- foNI, Nf) = N$-) -I- foaN,, (N, = NoI* + eaN,,*, 

N, = No2* = eN,,*); N,* = N,RiEh,rna. 

fo 
Zero 

approximation feNt fiN* 

0.2 1.552 -0.389 0.029 1.163 1.192 
0.3 1.552 -0.587 0.072 0.965 1.037 
0.4 1.552 -0.776 0.119 0.766 0.885 
0.5 1.552 -0.972 0.182 0.580 0.762 
0.6 1.552 -1.172 0.265 0.380 0.645 

hmax 

hmin 

1.22 0.738 - 0.006 0.744 
1.50 0.944 - 0.028 0.975 
1.86 1.234 - 0.084 1.318 
2.33 1.733 - 0.198 1.931 
3.0 2.420 - 0.448 2.868 

Table 1 

First Second 
approximation approximation 

Table 2 

Zero 
approximation 

* 
ENlO 

I 
EWZO 

Second 
approximation 

Table 3 

f* I Zero 
approximation foN;i 

0.2 0.640 -0.171 0.012 0.469 0.481 
0.3 0.640 -0.257 0.027 0.383 0.410 
0.4 0.640 -0.342 0.047 0.298 0.345 
0.5 0.640 -0.427 0.075 0.213 0.288 
0.6 0.640 -or513 0.110 0.127 0.237 

First Second 
approximation approximation 

Let us examine some particular cases of the problem. 
Cylindrical shell of variable thickness for an initial membrane 

state. In this case, setting lo = 0 into (3.4), we obtain the values of the upper critical 
forces which are presented in Table 2 as a function of the thickness ratio hmax/hmfn 
(m = 12, n = 10). 

Constant thickness cylindrical shell for an initial bending state. 

In this case, setting e = 0 into (3.4), we obtain the values of the critical forces as afunc- 
tion of the initial bending state, presented in Table 3 (P = 23, m = 12, n = 14). The 
shell thickness is taken equal to the minimum value hmfn of a variable thickness shell 
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As the numerical examples show, the difference between the first and second approxi- 
mationsisnegligible if f,~ and E < 0.6. Hence, the three approximations in the form of 
(3.4) in the small parameter reach a satisfactory approximation in the solution of stabi- 
lity problems of the initial bending state. 
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